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Consumption Risk-Sharing in Social Networks†

By Attila Ambrus, Markus Mobius, and Adam Szeidl*

We develop a model in which connections between individuals serve 
as social collateral to enforce informal insurance payments. We show 
that: (i) The degree of insurance is governed by the expansiveness of 
the network, measured with the per capita number of connections 
that groups have with the rest of the community. “Two-dimensional” 
networks—like real-world networks in Peruvian villages—are suffi-
ciently expansive to allow very good risk-sharing. (ii) In second-best 
arrangements, insurance is local: agents fully share shocks within, 
but imperfectly between endogenously emerging risk-sharing groups. 
We also discuss how endogenous social collateral affects our results. 
(JEL D85, G22, O15, O17, Z13)

In much of the developing world, people face severe income fluctuations due to 
weather shocks, diseases affecting crops and livestock, and other factors. These fluc-
tuations are costly because households are poor and lack access to formal insurance 
markets. Informal risk-sharing arrangements, which help cope with this risk through 
transfers and gifts, are therefore widespread. For example, Figure 1 depicts financial 
and in-kind transfers between relatives and friends in a rural village in the Huaraz 
province of Peru.1

Development economists have studied both the pattern of informal transfers and 
their effectiveness in sharing risk. Two seemingly contradictory findings have been 
documented. On the one hand, these arrangements often seem to be based on local 
obligations, as people mainly help out close neighbors, relatives, and friends (Udry 
1994). On the other hand, these local mechanisms often achieve almost full global 
insurance on the village level. For example, Townsend (1994) argues that the full 

1 The data used in constructing this figure were collected by Dean Karlan, Markus Mobius, and Tanya Rosenblat. 
See Appendix B for details.
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insurance model provides a surprisingly good benchmark even though it is typically 
rejected in the data.2

How do local obligations and transfers aggregate up to good global risk-sharing? 
To shed light on this question, in Section I we build a simple model of risk-sharing 
in social networks. In our model, full insurance is difficult to obtain because it 
requires a high level of connectedness that we do not observe in real social network 
data. However, consistent with the evidence, we also show that close to perfect 
risk-sharing can be achieved for the type of more loosely connected social net-
works that we do observe. Our model also allows us to study the nature of informal 
risk-sharing arrangements. We show that households’ consumption will comove 
more strongly with that of socially closer households, a prediction consistent with 
the empirical findings in Angelucci, De Giorgi, and Rasul (2012), who therefore 
provide indirect evidence for our model.

We model the social network as a set of preexisting relationships, such as friend-
ships and family ties. These links have utility values, which represent either the 
direct consumption value of relationships, or indirect benefits from future trans-
actions. We define a risk-sharing arrangement as a set of transfers between direct 
neighbors in the social network in every state of the world. This arrangement is 

2 Also see Ogaki and Zhang (2001) and Mazzocco (2007).

Figure 1. Financial and Real Transactions between Relatives and Friends in a Rural Community in Peru

Notes: Transactions are represented as lines between transacting parties in the village map. Thickness of line measures 
value of transaction in Peruvian New Soles; non-dotted lines indicate transfers happening in both directions.

Agricultural tool (74.3%)
Other tool (7.3%)
Animals (1.8%)
Electric device (0.8%)
Kitchen utensil (5.6%)
Clothes (0.7%)
Food (7.0%)
Other (2.5%)

0 to 10 S/. 40.5%
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101 S/. or more 15.9%
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subject to moral hazard: ex post, an agent who is expected to make a transfer to a 
network neighbor may prefer to deviate and withhold payment. In our model, such 
deviations result in the loss of the affected link. Intuitively, network links serve as 
social collateral ensuring that agents live up to their obligations under the informal 
risk-sharing arrangement.

In Section II we state our basic theoretical result, establishing an equivalence 
between this simple model in which an individual deviation is punished by the loss of 
a link with the cheated friend, and a more realistic model in which a group deviation 
is punished, through ostracism, by the rest of the community. In this more realistic 
model with ostracism and group deviations, a consumption allocation can be imple-
mented if the net transfer from any group of agents to the rest of the community does 
not exceed the sum of the values of all links between the group and the community. 
Then, the intuition for the equivalence with link-level punishments is that individual 
obligations embedded in the value of links build up to group obligations represented 
by the total value of links connecting the group with the larger community.

The equivalence between individually rational arrangements with link-level 
enforcement and coalition-proof arrangements with ostracism has two implications. 
First, it shows that decentralized insurance arrangements with link-level enforce-
ment can also be implemented in a centralized fashion through intermediaries such 
as trusted village elders, who respect the obligations of each group (e.g., extended 
family) in the community. Second, the result relates the geometry of the network to 
its effectiveness for risk-sharing, allowing us to study how local links aggregate to 
social capital at the community level.

The key property of network structure identified by our equivalence result is called 
expansiveness, and measures the number of connections that groups of agents have 
with the rest of the community relative to group size. To gain intuition about this 
property, consider the three example networks in Figure 2. Among these networks, 
the infinite line in Figure 2, panel A is the least expansive, because any connected 
set of agents always has only two links with the rest of the community. The infinite 
plane network of Figure 2, panel B is more expansive, while the infinite binary tree 
of Figure 2, panel C is the most expansive network of all, where the number of out-
going links for any set grows at least proportionally with its size.

We show that full insurance requires highly expansive networks like the infinite 
binary tree. However, we do not find that real-world social networks in rural villages 
in Peru exhibit this large degree of expansiveness. Instead, these social networks are 
more similar to planar networks, possibly because people tend to have connections in 
multiple directions at close geographic distance. We next show that a two-dimensional 
structure, such as the one found in our Peruvian data, is sufficient to ensure very good 
risk-sharing in most states of the world. For an intuition, consider a connected group 
of agents in the plane network. With idiosyncratic shocks, the standard deviation of the 
total endowment of the group is proportional to the square root of group size. But on 
the plane, the number of outgoing links from the group is also at least proportional to 
the square root of size (the worst case would be when the group has a square shape). 
Thus group obligations with the rest of the community—links connecting the group 
with the network—are of the same order of magnitude as group shocks. Since this 
holds for every group, it follows that almost full risk-sharing can be implemented in 
the network. This argument applies not just for the regular plane network, but for any 
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social network which has a two-dimensional substructure. We call these networks geo-
graphic networks and we show that our Peruvian village networks fall into this class. 
As a result, our model provides a potential explanation for the informal insurance 
puzzle highlighted by Townsend.

The above results constitute a quantitative analysis of informal risk-sharing. 
Section III presents our second main contribution, a qualitative analysis of constrained 
efficient “second-best” arrangements. We show that in these arrangements, for every 
realization of uncertainty the network can be partitioned into endogenously organized 
connected groups called “risk-sharing islands.” This partition has the property that 
shocks are completely shared within, but only imperfectly across islands. The island 
structure can be understood in terms of “almost deviating coalitions,” that are indiffer-
ent between staying in the network and deviating as a group. Islands are maximal con-
nected sets subject to the constraint that they are not divided by any almost deviating 
coalition; therefore, insurance across island boundaries is limited, but insurance within 
islands is complete. The size and location of these risk-pooling islands is endogenously 
determined by the social structure and the realization of endowment shocks, consistent 
with evidence documented by Attanasio et al. (2012), and distinguishing our model 
from theories with exogenously specified risk-sharing groups.

A key implication of the islands result is that an agent’s consumption will comove 
more with the consumption of closely connected neighbors. This follows because islands 
are connected subgraphs: agents who are socially closer are more likely to belong to 
the same island and thus provide more insurance. This observation helps characterize 

Panel B. Plane



c[] ∼ ||1/2

Panel A. Line


c[] ∼ 1

Panel C. Binary tree



c[] ∼ ||

Figure 2. Expansion Properties of Three Example Networks

Notes: The parameter-area ratio c[ ] is defined as the number of links leaving the set  (perim-
eter) divided by the number of agents inside the set (area). The perimeter-area ratio of a typical 
set in the network describes the expansiveness of the geometry.
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informal insurance as a function of shock size. Risk-sharing works well for relatively 
small shocks: sharing islands are large, and both direct and indirect friends help out. As 
the size of the shock increases, only close friends help with the additional burden; and 
risk-sharing completely breaks down for large shocks. Some of these predictions are 
confirmed in the empirical work of Angelucci, De Giorgi, and Rasul (2012).

In Section IV we examine how our qualitative findings extend to a setting in 
which the network structure is given, as before, but link capacities are determined 
endogenously through costly socializing. A basic intuition we highlight is that the 
marginal value of extra socializing is related to the likelihood that an agent is at the 
boundary of a risk-sharing island, because it is only in such events that the agent’s 
transfer constraints are binding. This logic implies that for low capacity levels—that 
is, when socializing is costly—the incentives to socialize are increasing in the likeli-
hood of having islands with large boundaries, i.e., the expansiveness of the network, 
further strengthening the results obtained in our basic model. At higher capacity 
levels—that is, when socialization is inexpensive—this relationship is eventually 
reversed because the better insurance provided by expansive networks also reduces 
the benefits of further insurance. We demonstrate with simulations the implication 
of this logic that for costly socialization, equilibrium link capacities are higher in the 
(more expansive) plane than on the line, amplifying our basic result that plane-like 
networks yield significantly better risk-sharing.

In the concluding Section V we discuss some further research directions and cave-
ats with our model. In Appendix A and an online Appendix we present the proofs, 
and in Appendix B we describe the Peru data.

Our paper builds on a growing literature studying informal insurance in networks. 
Bloch, Genicot, and Ray (2008) develop a model with both informational and com-
mitment constraints, and characterize network structures that are stable under certain 
exogenously specified risk-sharing arrangements. We conduct the opposite investi-
gation: taking the network as given, we study the degree and structure of informal 
risk-sharing. Bramoulle and Kranton (2007) also study insurance arrangements in 
networks, but in their model there are no enforcement constraints. Our modeling 
approach builds on Karlan et al. (2009), who explore informal borrowing in networks.3 
Empirical work in this area includes Fafchamps and Lund (2003); De Weerdt and 
Dercon (2006); and Fafchamps and Gubert (2007), who use data on village networks, 
Attanasio et al. (2012) who document the importance of social ties for risk-pooling, 
and Mazzocco (2007) who emphasizes the role of within-caste transfers.4

3 See also Ali and Miller (2013), who study network formation with repeated games and Dixit (2003), who 
compares relational and formal governance in a circle network.

4 More broadly, our work contributes to the growing literature on informal institutions. Kandori (1992); Greif 
(1993); and Ellison (1994) develop game-theoretic models of community enforcement, and Kranton (1996) stud-
ies the interaction between relational and formal markets. In the context of consumption insurance, Coate and 
Ravallion (1993); Kocherlakota (1996); Ligon (1998); and Ligon, Thomas, and Worrall (2002) explore related 
models with limited commitment, while Cochrane (1991) and Mace (1991) are influential empirical studies of 
consumption insurance. These papers do not study the effects of network structure.



154 THE AMERICAN ECONOMIC REVIEW january 2014

I.  A Model of Risk-Sharing in the Network

A. Model Setup

In our model, agents face income uncertainty due to factors such as weather 
shocks and crop diseases. In the absence of a formal insurance market, agents can 
agree on an informal risk-sharing agreement that specifies transfers between pairs of 
agents in each state of the world. These transfers are secured by the social network: 
connections in the network have an associated consumption value that is lost if an 
agent fails to make a promised transfer.

Formally, a social network G = (, ) consists of a set  of agents (vertices) 
and a set  of links, where a link is an unordered pair of distinct vertices. Unless oth-
erwise stated, we assume that the network is finite; the online Appendix discusses 
how to extend our setup to infinite networks. Each link in the network represents 
a friendship or business relationship between the two parties involved. We assume 
that the strength of these relationships is determined outside the model, and that they 
are measured by a capacity.

Definition 1: A capacity is a function c :  ×  → ℝ such that c(i, j) > 0 if 
(i, j) ∈  and c(i, j) = 0 otherwise.

The capacity of an ​( i, j )​ link measures the benefit that i derives from his relation-
ship with j. These benefits can represent the direct utility that agents derive from 
interacting with each other, or the utility or monetary value of economic interac-
tion in the present or in future periods. For ease of presentation, we assume that the 
strength of relationships is symmetric, so that c(i, j) = c( j, i) for all i and j. Our 
results are easy to generalize to the case with asymmetric capacities.

Agents in this economy face uncertainty in the form of endowment risk. We denote 
the vector of endowment realizations by e = (​e​i​​)​i∈​  , which is drawn from a com-
monly known joint distribution. The vector of endowments is observed by all agents.

A risk-sharing arrangement specifies a collection of bilateral transfer payments ​
t​ e​ = ​( ​t​ i j​ e

 ​ )​, where ​t​ i j​ e
 ​ is the net dollar amount transferred from agent i to agent j in 

state of the world e, so that ​t​ i j​ e
 ​ = −​t​ ji​ e

 ​ by definition. The risk-sharing arrangement ​t​ e​ 
implements a consumption allocation ​x​e​ where ​x​ i​ e​ = ​e​i​ − ​∑​ j​ 

 
 ​ ​t​ i j​ e

 ​ . For simplicity, in 
the rest of the paper we suppress in notation the dependence of the transfers ​t​ i j​ e

 ​ and 
consumption allocation ​x​e​ on e.

An agent who consumes ​x​i​ enjoys utility ​U​i​ ​( ​x​i​ , ​c​i​ )​, where ​c​i​ = ​∑​ j​ 
 
 ​ c(i, j) denotes 

the total value that agent i derives from all his relationships in the network, and U 
is strictly increasing and concave. To simplify exposition, in the body of the paper 
we focus on the analytically convenient case where consumption and friendship are 
perfect substitutes, so that the utility of i is ​U​i​ ​( ​x​i​ + ​c​i​ )​. In the online Appendix we 
extend the model to the case when consumption and friendship are imperfect substi-
tutes, and show that under weak conditions, our qualitative conclusions extend. The 
agent’s ex ante expected payoff is E​U​i​ ​( ​x​i​ + ​c​i​ )​, where the expectation is taken over 
the realization of endowment shocks.

We say that a risk-sharing arrangement is incentive compatible if every agent i 
prefers to make each of his promised transfers ​t​i j​ rather than lose the ​( i, j )​ link and 
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its associated value. Because consumption and friendships are perfect substitutes, 
incentive compatibility implies ​t​i j​ ≤ c(i, j).

B. Discussion of Modeling Assumptions

Risk-Sharing Arrangement.—The most literal interpretation of these arrangements, 
in the spirit of Arrow and Debreu, is that agents choose an ex ante informal contract, 
which specifies payments for every conceivable realization of uncertainty. An alterna-
tive interpretation is that the consumption allocation is determined ex post by a social 
norm that specifies how to reallocate goods among connected agents. For example, 
Fafchamps and Lund (2003) describe how informal insurance is implemented through 
a collection of bilateral “quasi-loans,” where households borrow from neighbors, who 
expect their kindness returned when they themselves are hit by adverse shocks.

Exogenous Capacities.—We analyze a one-time risk-sharing arrangement in a 
network where links and capacities are determined outside the model. The most 
direct interpretation of this framework is that link values are generated by a number 
of social activities and services besides risk-sharing. In this interpretation, the links 
themselves may be created through a long term network formation process largely 
shaped by factors outside our model, such as kinship and geographic proximity. An 
alternative view is that link capacities are shaped endogenously by the insurance 
benefits that they generate. One approach to modeling this effect is to allow agents to 
invest in socializing: higher socializing leads to higher capacities and hence greater 
insurance. We explore this extension of our framework in Section IV. In an even 
richer environment with explicit dynamics, the value of a network connection might 
be determined in part by the ability to conduct insurance transactions through the 
link in future periods. As Bloch, Genicot, and Ray (2008) show in a related model, 
this leads to restrictions on the equilibrium network structure and link values. We 
leave the investigation of such a framework for future research.

Incentive Compatibility.—Our notion of incentive compatibility is motivated 
by Karlan et al. (2009). In their model of informal borrowing, a link between 
two agents is destroyed if a promised transfer is not made. They develop explicit 
micro-foundations for this assumption based on the idea that failure to make a trans-
fer is a signal that the agent no longer values his friend, in which case these former 
friends no longer find it optimal to interact with each other.5 An alternative justifica-
tion is that people break a link for emotional or instinctive reasons when a promise 
is not kept; Fehr and Gachter (2000) provide evidence for such behavior.

Full Information.—Our model assumes that agents in the community can observe 
the vector of endowment realizations so that they know what transfer payments to 
expect from their neighbors and how much to send. Full information about endow-
ments seems reasonable in many village environments, in which individuals can 
easily observe the state of livestock or crops. For example, Udry (1994) shows that 

5 In the online Appendix we develop similar foundations for the present model, in which the value of connections 
is earned in a “friendship game.”
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asymmetric information between borrowers and lenders is relatively unimportant in 
villages in northern Nigeria.

C. Equivalence of Link-Level Punishments with Individual Deviations  
and Ostracism with Coalitional Deviations

This section establishes our main theoretical result: that our basic model of 
link-level punishments is equivalent to ostracism-based enforcement in the presence 
of coalitional deviations.

A plausible and commonly explored way of enforcing cooperation in social inter-
actions is ostracism, in which a deviator is punished by all his network neighbors 
cutting their links with him.6 It is easy to see that, absent other constraints, this type 
of enforcement mechanism—because the potential punishment following a devia-
tion is larger—can implement higher levels of sharing than our basic model.

Yet, by only considering individual deviators, this form of ostracism abstracts 
away from the possibility of people siding with their close friends, and hence seems 
implausibly strong. For example, it seems unlikely that a person would punish a 
cousin or a sister just because she defected on a common acquaintance. To address 
this issue, we propose a version of ostracism which allows not only individuals, but 
also coalitions to deviate.7 To illustrate why coalitional deviations help in this mat-
ter, suppose that i, j, and k form a triangle network, and that k is a weak friend of 
both i and j, who in turn are strongly connected cousins. In this network, ostracism 
against individual deviators could enforce a large transfer from i to k, because, in 
the event that i defaults on that transfer, she would be badly punished by the loss of 
both her links. But if we allow for coalitional deviations as well, then such a large 
transfer is no longer incentive compatible: because the strong connection with a 
cousin is more valuable than a weak connection to an acquaintance, agents i and j 
may collectively find it more profitable to cut their weak links to k and redistribute 
the required payment among themselves. Thus, coalitional deviations, by allowing 
people to side with their close social contacts, impose additional plausible restric-
tions on the set of arrangements.

To formally model ostracism in the presence of coalitional deviations, we need 
some definitions. For any group of agents , we define the perimeter c​[    ]​ of  to 
be sum of the values of all links between the group and the rest of the community:

(1) 	  c ​[    ]​  =   ​ ∑​ 
i∈, j∉

​ 
 

  ​ c​( i, j )​ .

Intuitively, the perimeter is the maximum extent to which the rest of the community 
could punish group  using ostracism. Similarly, we define the total endowment of 
the group as ​e​​ and their total consumption under a risk-sharing arrangement as ​x​​  .

Definition 2: A risk-sharing arrangement is coalition-proof if ​e​​ − ​x​​ ≤ c​[    ]​ 
holds for all groups of agents .

6 Versions of this idea are explored in Kandori (1992), Greif (1993), and Dixit (2003).
7 Genicot and Ray (2003) follow a similar approach in a model of group formation.
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The arrangement is coalition-proof if no group has an incentive to deviate: the 
net transfer between any group of agents and the rest of the community, defined as 
the difference between the group’s total endowment and total consumption, does 
not exceed the sum of the values of all links connecting the group and the rest of 
the community. In this definition we only look at the incentives of the coalition as a 
whole; but in the online Appendix we show that, in our context, the simple notion of 
coalition-proofness we use above is equivalent to coalition-proofness along the lines 
of Bernheim, Peleg, and Whinston (1987), i.e., allowing only for credible coali-
tional deviations that are not prone to further credible deviations by subcoalitions. 
The intuition behind this is that in our framework any such further deviation by a 
subcoalition is also a profitable coalitional deviation in the first place (i.e., even in 
the absence of the original deviation). Also note that the extent of ostracism we 
allow for in this definition—given the possibility of coalitional deviations—is the 
harshest possible. More limited ostracism, such as punishing a coalition by only 
those who are within a given social distance of the agents who have been defected 
on, would therefore yield lower risk-sharing.

Theorem 1: A consumption allocation x that is feasible ​( ​∑​  ​ 
 ​ ​x​i​ = ​∑​  ​ 

 ​ ​e​i​ )​ is sup-
ported by ostracism in the presence of coalitional deviations if and only if it can be 
implemented by an incentive-compatible informal risk-sharing arrangement.

The theorem states that ostracism, when combined with coalitional deviations, 
implements exactly the same insurance arrangements as link-level punishment. In 
essence, we have two opposing forces: while ostracizing individual deviators increases 
the set of enforceable allocations, allowing for coalitional deviators reduces it. In the 
perfect substitutes environment these two forces exactly cancel. To understand the 
intuition for the theorem, first note that one direction is immediate. Any arrangement 
that can be implemented by link-level punishments can also be implemented by coali-
tional ostracism: since each transfer is bounded by the capacity of the link, the same 
inequality must also hold when transfers are added up along the perimeter of a group.

Showing the converse—that coalition-proof ostracism cannot implement more 
than link level punishments—is more difficult, and builds on the mathematical the-
ory of network flows. In particular, we show that finding a transfer representation for 
a coalition-proof allocation is equivalent to finding a flow in an auxiliary network 
with two additional nodes s and t added. According to the theorem of Ford and 
Fulkerson (1956), the maximum flow equals to the value of the minimum cut, i.e., 
the smallest capacity that must be deleted so that s and t end up in different com-
ponents. We prove that each cut in the flow problem corresponds to a coalition, and 
then the coalition-proofness condition ensures that the cut values are high enough so 
that the desired flow can be implemented.

To see the intuition behind this proof, consider a feasible and coalition-proof con-
sumption allocation x. To implement this allocation with link-level punishments, we 
need a set of transfers which—respecting the capacity constraints over links—move 
money from those who, in autarky, have “too much” (​e​i​ > ​x​i​) to those who, in autarky, 
have “too little” (​e​i​ < ​x​i​) relative to the target level of consumption. To build intuition 
for why such transfers exist, imagine that t is the transfer arrangement that gets “clos-
est” to implementing x. Given the allocation implemented by t, let  denote the set of 
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all agents to whom, respecting the capacity constraints, additional consumption goods 
from agents with ​e​i​ > ​x​i​ can still be transferred through the network. The key insight 
is that unless t implements x, the set  forms a blocking coalition for arrangement 
x, contradicting the assumption that x is coalition-proof. This follows because—by 
its construction as the maximal set of agents to whom resources can still flow—no 
additional amount can be sent through the perimeter of , violating the coalitional 
constraint ​e​​ − ​x​​ ≤ c​[    ]​ unless x is already implemented by t.

A natural question about the theorem is whether a weaker version of 
coalition-proofness, in which only a smaller set of coalitions—e.g., those with a lim-
ited number of participants—are allowed to deviate is sufficient for the equivalence. 
The answer to this question is negative. To see why, consider the “islands” network in 
Figure 3, which is a complete network which consists of two equal-sized communi-
ties. For concreteness, suppose that there are 100 agents in each community, that all 
within-community links have equal capacities of 100, and that all cross-community 
links also have equal capacities of 0.01. Consider the arrangement which sends, from 
the first to the second community, 0.01 units of the consumption good over every 
cross-community link. This arrangement transfers in total 100 units of consumption: 
each agent in the first community contributes one unit which is equally distributed to 
all agents in the second community. Because capacity constraints are satisfied, this 
is an incentive-compatible transfer arrangement; but because all links used in the 
arrangement are operating at full capacity, no additional transfer from the first to the 
second community would be incentive compatible. When looking at this arrangement 
from the perspective of coalitions, the binding constraint which does not permit addi-
tional transfers corresponds to the coalitional deviation of the first community. Thus, 
in this example, the “local” link-level constraints map into a “global” coalitional 
constraint in which the blocking coalition corresponds to half of the entire network.

Theorem 1 has two main implications. First, it shows how individual obligations 
aggregate up to social capital at the community level. Links matter not because 
they act as conduits for transfer, but because they define the costs of deviations, and 
hence the pattern of obligations in the community. In particular, a coalition-proof 
arrangement does not have to be implemented by transfers over links: intermedi-
aries such as village elders could also collect and distribute resources, as long as 
they respect the obligations of each group of households, i.e., coalition-proofness.8 
Hence our model need not predict long chains of transfers in practice: these chains 
are likely to be shortened by intermediaries.

A second implication of the theorem is that it relates the geometry of the network 
to its effectiveness for risk-sharing. This connection forms the basis of our analysis 
in the following section.

II.  The Limits to Risk-Sharing

In this section we use the equivalence between incentive compatibility and coali-
tion-proofness to explore how much risk-sharing can be obtained in a given network. 
Our central finding is that good risk-sharing requires social networks to have good 

8 At the extreme, a single trusted intermediary could implement the allocation by collecting a “tax” of ​e​i​ − ​x​i​ from 
each agent i for whom this is positive, and use these funds to pay the unlucky agents for whom ​e​i​ − ​x​i​ is negative.
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“expansion properties”; that is, all groups of agents should have enough connections 
with the rest of the community, relative to group size.

A. Limits to Full Risk-Sharing

We first use Theorem 1 to establish a negative result: full risk-sharing cannot be 
achieved unless the network is extremely expansive, because coalitions with a rela-
tively low “group obligation” c​[    ]​ will choose to deviate in some states.

To build intuition, consider the infinite line, plane, and binary tree networks 
depicted in Figure 2, where all link capacities are equal to a fixed number c.9 For 
these examples, we assume that endowment shocks are independent across agents, 
and take values +σ or −σ with equal probability. We focus on implementing equal 
sharing, i.e., an arrangement where all agents consume the per capita average endow-
ment. This allocation is Pareto-optimal when agents have identical preferences over 
consumption. Since our example networks are infinite, the law of large numbers 
implies that the average endowment is zero; equal sharing thus requires all agents to 
consume zero with probability one.

Consider an interval set of consecutive agents  on the infinite line network (see 
Figure 2, panel A). The coalitional constraint for  is most likely to bind in the 
positive probability event where all agents in  receive a positive shock +σ. In this 
event, the zero consumption profile dictates that members of  give ​|    |​ · σ to the 
rest of the community; but they can only commit to giving up c​[    ]​ = 2c. Coalition 
proofness thus requires 2c ≥ ​|    |​ · σ for all . However, for any fixed c, this is 
violated for long enough intervals . A similar negative result holds for the more 
expansive plane network in Figure 2, panel B. The perimeter of a square-shaped set 
 is c​[    ]​ = 4c ​√ 

_
 ​|    |​ ​; for a large enough square, this is smaller than ​|    |​ · σ, which 

is how much members of  would have to give up if they all get a positive shock +σ.
However, these perimeter bounds do not rule out equal sharing for the yet more 

expansive binary tree in Figure 2, panel C. Here, the perimeter of any set  is at least 
c · ​|    |​, and so for c ≥ σ, no coalition of agents has to give up more than their group 
obligation in any realization.

9 We consider infinite networks here because they are useful for building intuition.

Figure 3. Network of Two “Islands”  
with Strong Intra-Island and Weak Inter-Island Links

Community 1 Community 2
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These examples suggest that equal sharing can only be incentive compatible in 
networks with good expansion properties, i.e., where the perimeter of sets grows 
in proportion with set size. To measure expansiveness, we define the “perimeter-
area ratio” a​[    ]​ = c​[    ]​/​|    |​, where area stands for the number of agents in . 
Intuitively, a​[    ]​ represents the group’s maximum obligation to the community rela-
tive to the group’s size. The next result tightens the connection between expansive-
ness and insurance by characterizing full risk-sharing in any network in terms of  
a​[    ]​, under the assumptions that (i) the support of ​e​i​ is the same compact interval 
of length S for all agents; and (ii) the support of ​e​i​ given any realization of ​e​−i​ is the 
same as its unconditional support, for all i.10

Proposition 1 (Limits to Full Risk-Sharing): Under the above assumptions, equal 
sharing is supported by an incentive-compatible risk-sharing arrangement if and only 

if for every subset of agents  the perimeter-area ratio satisfies a​[    ]​ ≥ ​( 1 − ​ 
​|    |​
 _ ​|  |​ ​ )​ S.

The condition implies that a​[    ]​ must be greater than the constant S/2 for any set 
of size not exceeding half the size of the community. In particular, an implication 
for large networks is that a​[    ]​ must be bounded away from zero for such sets as 
the network size grows without bound: because the members of  must be willing 
to provide resources to the rest of the community even when they all get the highest 
possible realization while everyone outside gets the lowest. The above inequality 
ensures that the group has a large enough perimeter to credibly pledge the required 
resources even in such extreme realizations. The condition is violated for big groups 
on the line and plane networks because a​[  ]​ can be arbitrarily small, and only holds 
for highly expansive graphs like the binary tree.11

To further illustrate the implications of the proposition, consider the two-island 
network in Figure 3. This is a complete network in which each island has N/2 agents, 
each within-island link has capacity ​c​i​ and each cross-island link has capacity ​c​o​. 
We assume that the island network exhibits homophily, i.e., that within-island links 
are stronger: ​c​i​ ≥ ​c​o​. We let ​

_
 c ​ = (N/2 − 1)​c​i​ + (N/2)​c​o​ denote the per capita total 

capacity. The homophily index (Golub and Jackson 2012) of a group can be defined 
as the share of the capacity of within-group links relative to the capacity of all links 
that a group has, H = (N/2 − 1)​c​i​/ ​_ c ​. Now suppose that agents in this network are 
exposed to binary +σ/−σ shocks as above, and we attempt to implement equal shar-
ing. Clearly the realizations in which it is the most difficult to achieve equal sharing 
are when all agents in one island have a positive, and all agents in the other island 
have a negative realization, i.e., when  is one of the islands. The condition in the 
proposition for this case simplifies to (N/2)​c​o​ ≥ σ, or equivalently ​

_
 c ​(1 − H) ≥ σ. 

Intuitively, in this network full insurance is easier to implement if either link capaci-
ties are strong (​_ c ​ high) or homophily is weak (H is low).12

10 Bloch, Genicot, and Ray (2008) impose the same condition on endowment shocks in their Assumption 1.
11 Families of networks where the perimeter-area ratio is bounded below by a positive constant are called 

“expander graphs” in the computer science literature.
12 Note that, unlike in the line and plane examples, here a​[    ]​ = ​

_
 c ​(1 − H  ) is bounded away from zero when 

H < 1. Thus, fixing ​
_
 c ​ at a high enough constant value, the islands network—and in particular the complete network 

where all capacities are identical (​c​i​ = ​c​o​)—is sufficiently expansive to implement full insurance for any number 
of agents N.
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Full Insurance in Real World Networks.—We use data from a village commu-
nity in Huaraz, Peru to show that real-world networks are unlikely to be expansive 
enough to allow for full insurance.13

Figure 4, panel A compares the expansiveness of the Huaraz network with finite 
versions of the line and the plane network (a circle and a torus, with approximately 
the same number of agents as in the Huaraz network) as well as a finite random 
network with the same degree distribution as the Huaraz network. We use the  
latter network as a proxy for the most expansive tree-like network that could be 
achieved in the Huaraz village community.14 For all these networks, link capacities 
are assumed to be equal across links and normalized so that the per household aver-
age capacity is one. To measure expansiveness, we construct, for each household, a 
collection of “ball” sets which contain all households within a fixed social distance r. 
We then calculate the average of the perimeter-area ratio and set size for each r, and 
plot the perimeter-area ratio as a function of size for all four networks. Comparing 
across the finite-agent analogues of our three example networks illustrates our ear-
lier discussion: the perimeter-area ratio goes to zero quickly for the line, goes to zero 
more slowly for the plane, and least slowly for the random network.

The key curve in the figure is the thick solid line representing the actual social 
network in Huaraz. This curve lies slightly above the plane but well below the ran-
dom network, and approaches zero as set sizes grow, with a slope that parallels 
the curve for the plane. In fact, the Huaraz network is about as expansive as the 
three-dimensional “3D-cube network” of approximately equal size which we have 
also included in Figure 4, panel A. The figure shows that the Huaraz network is less 
expansive than the tree-like random network, and hence our model suggests that full 
insurance would not be enforceable.

The result is the same if we look at the two subnetwork of relatives and nonrela-
tive friends, respectively, in Figure 4, panel B: the nonrelative network is slightly 
more expansive, but does not approach the expansiveness of the random network.

Figure 4 suggests that the expansion properties of the Huaraz network are similar 
to—somewhat better than—the plane. A plausible reason is that the Huaraz net-
work, like many social networks in practice, is partly organized on the basis of  
geographic distance. For example, the average distance between two connected 
agents in this network is only 42 meters, while the average distance between two 
randomly selected addresses is 132 meters. This correlation between distance and 
network connections can result in expansion properties similar to the plane, if agents 
tend to have friends at close physical distance in multiple directions. This logic 
suggests that to understand partial insurance in real world networks, exploring 
plane-like networks is a useful first step.

13 The data was collected by Dean Karlan, Markus Mobius, and Tanya Rosenblat and is described in Appendix B 
in more detail.

14 There are formal results in the computer science and mathematics literature showing that the local structure of 
finite random network is approximately a random tree (Wormald 1999). Recent papers in the economics literature 
expand these results and apply them to economic models (Campbell 2013; Fainmesser and Goldberg 2012).
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B. Partial Risk-Sharing in the Plane and the Line Networks

We now show that when shocks are not too correlated, risk-sharing on the plane 
and similar networks is very good, and substantially better than on the line. We first 
develop an intuition for this result, then formalize it, and finally extend it to less 
regular networks.

Plane versus Line: Intuition.—Plane networks turn out to be just sufficiently 
well-connected to generate very good risk-sharing in most states of the world.  
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The key insight is that with a two-dimensional structure, outcomes in which the 
coalitional constraint binds under equal sharing become rare. To see the logic, con-
sider again the regular plane with the i.i.d. +σ/−σ shocks. As we have seen, equal 
sharing fails because households in a large n by n square  would need to give up ​
n​2​ · σ resources if all of them get a positive shock, which is an order of magnitude 
larger than the perimeter c​[    ]​ ∼ n.

The key is that for large n, such extreme realizations are unlikely, and in typical 
realizations the required transfers do not exceed the perimeter. With i.i.d. shocks, 
the standard deviation of the group’s endowment is only nσ, which is only of order 
n even though it is the sum of ​n​2​ random variables—intuitively, a lot of the idio-
syncratic shocks cancel out within the group.15 Thus the typical shock in  has the 
same order of magnitude as the maximum pledgeable amount, and hence potentially 
deviating coalitions are rare. The same logic works with correlated shocks, as long 
as correlation declines fast enough with distance. By way of contrast, the argument 
breaks down for the line, since the perimeter of even large interval sets is only 2c, 
a constant.

We now turn to formalizing these ideas.

Partial Risk-Sharing Measure.—We measure partial risk-sharing as the average 
utility loss relative to the benchmark of equal sharing where all agents consume the 
average endowment ​

_
 e ​ = ​e​​/| | :

 	  UDISP ​( x )​  =  E ​  1 _ 
| |

 ​  ​∑​ 
i∈

​ 
 

  ​ ​{ ​U​i​ ​( ​
_
 e ​ )​  − ​ U​i​ ​( ​x​i​ )​ }​.

This “utility-based dispersion,” is simply the difference between average utility 
under partial and full sharing. Here we ignore the dependence of utility on link con-
sumption to simplify notation.

If all agents have the same quadratic utility function over x, then we can express 
UDISP as an increasing function of

(2) 	  SDISP ​( x )​  = ​​ [ E ​  1 _ 
| |

 ​  ​∑​ 
i∈

​ 
 

  ​ (​x​i​  − ​
_
 e ​​)​2​ ]​​1/2

​, 

which is the square root of the expected cross-sectional variance of x. For nonqua-
dratic utilities, SDISP​( x )​ can be interpreted as a second order approximation of the 
utility based measure. SDISP is a tractable measure that inherits the intuitive prop-
erties of UDISP: it is zero only under equal sharing and positive otherwise, and its 
magnitude measures the departure from equal sharing: e.g., if ​e​i​ are +σ/−σ with 
equal probabilities, then in autarky SDISP​( e )​ = σ. We use SDISP as our central 
measure in the analysis below.16

15 The sum of ​n​2​ i.i.d. random variables has variance ​n​2​ ​σ​2​ and hence standard deviation nσ.
16 Equation (2) only defines SDISP for finite networks. For infinite networks, we define it to be the lim sup of (2), 

taken over an increasing sequence of ball sets centered around some agent i. For the line and the plane, the choice 
of i does not affect this lim sup.
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Shocks with Limited Correlation.—While we focused on i.i.d. symmetric shocks 
in our example, the formal result accommodates much more general endowment 
shocks. The key requirements are that shocks do not have fat tails and are not too 
correlated; we formalize these using assumptions (P1) to (P5) below.

We model the source of uncertainty as a collection of independent random vari-
ables ​y​j​ , j = 1, … , ∞, which can represent both idiosyncratic shocks like illness 
and aggregate shocks like weather. Like in a factor model, endowments are deter-
mined as linear functions of these basic shocks: ​e​i​ = ​∑​ j​ 

 
 ​ ​α​i j​ ​y​j​ where ​α​i j​ measures 

the extent to which agent i is exposed to shock j. We assume that ​e​i​ and ​y​j​ satisfy the 
following:17

(P1) [Thin tails.] ​y​j​ are independent, have zero mean and unit variance, and satisfy 
that there exists K > 0 such that log [E(exp [θ ​y​j​])] ≤ K​θ​ 2​/2 for all θ > 0.

(P2) [Bounded variance.] There exists K > 0 such that ​∑​ j​ 
 
 ​ ​α​ i j​ 2

 ​ < K for all i.

(P3) [Limited correlation.] Endowments satisfy ​σ​​/​|    |​ ≤ K · ​​|    |​​−1/2​ for some 
K > 0, where ​σ​​ is the standard deviation of ​e​​ .

(P4) [More people have more risk.] For all  ⊆ , we have ​σ​​ ≤ ​σ​​ .

(P5) [Sharing with more people is always good.] For all  ⊆ , we have  
​σ​​/​|    |​ ≤ ​σ​​/​|  |​.

Here (P1) is a uniform bound on the moment-generating function of ​y​j​ , which 
allows us to use the theory of large deviations to bound the tails of ​e​i​ . (P1) is sat-
isfied for example if ​y​j​ are i.i.d. normal, or if they have a common compact sup-
port. Property (P3) requires that shocks are not too correlated, so that aggregate 
uncertainty disappears at the same rate as the square root of set size. This condition 
considerably relaxes the i.i.d. assumption; for example, on the line or plane, (P3) is 
satisfied if the correlation between ​e​i​ decays geometrically with network distance.

Formal Results.—We now turn to a formal result on risk-sharing on the plane and 
line networks. Although the formal result assumes that all links have equal capaci-
ties c, it would continue to hold—with different constants—if all link capacities are 
from a bounded interval ​[ c/k, ck ]​ for some k > 0. We focus on infinite networks 
because they are more convenient for stating our asymptotic result.

Proposition 2: Under properties (P1)–(P5), there exist positive constants K,  
​K′​, and K″ such that

	 (i) 	On the infinite line with capacities c and i.i.d. shocks, we have SDISP​( x )​  
≥ K/c for all incentive-compatible risk-sharing arrangements.

17 From now on we use the convention that K denotes a positive constant, the value of which at each occurrence 
of the phrase “there exists K ” may be different; and that the same holds for ​K​′​ and for ​K​″​.
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	 (ii) 	On the infinite plane with capacities c, we have SDISP​( x )​ ≤ ​K′​ exp ​[ −K″​c​ 2/3​ ]​  
for some incentive-compatible risk-sharing arrangement.

This proposition characterizes the rate of convergence to full risk-sharing as capac-
ities increase. The contrast between the line and plane is remarkable. Risk-sharing is 
relatively poor on the line: SDISP goes to zero at a slow polynomial rate of 1/c as 
c goes to infinity. In contrast, the rate of convergence for the plane is exponentially 
fast, confirming our intuition that agents are able to share typical shocks due to the 
more expansive structure.

The proof of the proposition is in the online Appendix. The proof of (i) essentially 
builds on our earlier arguments: for long enough intervals, much of the interval-specific 
shock must remain trapped in the set, because the perimeter is only 2c. Even if agents 
perfectly smooth inside the interval, overall dispersion remains high.

The result for the plane is much more difficult, and requires going beyond our 
previous intuition: even though the coalitional constraint is rarely violated for any 
particular set , we need an allocation that simultaneously satisfies the constraints 
of all sets. Equivalently, we need to construct a transfer arrangement such that the 
typical flow on every link meets the capacity constraint. The key idea is to con-
struct this arrangement from the ground up. First we partition the plane into 2 × 2 
squares of agents and implement equal sharing in each of these. Then we implement 
full sharing in 4 × 4 squares, then in 8 × 8 ones, and so on. After n iterations, we 
obtain full sharing of endowments in ​2​n​ × ​2​n​ “super-squares.” Because each link is 
used once in every round, the construction uses every link at most n times. By our 
earlier intuition, each time a link is used, the required transfer is typically of order 
one, resulting in a total flow per link of order n. This is the uniform bound on the 
flow over every link that we require for exponentially good risk-sharing. Since the 
arrangement does not yet account for capacity constraints, we use the theory of large 
deviations to bound the exceptional event when incentive compatibility is violated, 
obtaining the bound in the proposition.

Simulations.—Numerical simulations suggest that the asymptotic results of the 
proposition provide a good description of behavior for finite c as well. Figure 5 
shows constrained optimal allocations for finite line and plane networks, for a typi-
cal realization of uniform shocks with support ​[ −1, 1 ]​.18 Figure 5, panel A shows 
the endowment realizations for both the line and the plane network: darker shaded 
(lightly shaded) squares correspond to higher (lower) endowments. We use the same 
vector of realizations for both networks. The SDISP of these realizations is 0.55 in the 
absence of any insurance. Now consider Figure 5, panel B, where we assume that the 
average capacity per agent is 1: thus each link has value c = 0.5 in the line network 
and c = 0.25 in the plane. For these capacities, the figure depicts the optimal, SDISP 
minimizing incentive compatible allocation. The contrast between the line and the 
plane is remarkable: for the line, we see substantial variation in shades reflecting 
imperfect risk-sharing (SDISP = 24 percent), while the plane achieves better insur-
ance (SDISP = 12 percent). As capacities increase, the contrast becomes sharper.  

18 In the simulations opposing edges of the networks are connected, so the line is in fact a circle and the  
plane a torus.
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Panel A. Initial endowments (uniform over [−1, 1])

SDISP = 0.556SDISP = 0.556

Panel B. Risk-sharing with total capacity 1 per agent

SDISP = 0.127
17 islands

SDISP = 0.246
30 islands

Panel C. Risk-sharing with total capacity 1.4 per agent

SDISP = 0.035
4 islands

SDISP = 0.199
17 islands

SDISP = 0
1 island

SDISP = 0.148
13 islands

Panel D. Risk-sharing with total capacity 2 per agent

Figure 5. Risk-Sharing Simulations  
on the Line and the Plane for Increasing Capacities
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In Figure 5, panel C, the per capita capacity in both networks is assumed to be 1.4, 
SDISP on the line is still 20 percent, while on the plane it falls to 3 percent. Finally, 
in Figure 5, panel D, when the per capita capacity is 2, dispersion on the line falls 
to 14 percent while full risk-sharing is achieved on the plane (SDISP = 0). We con-
clude that the asymptotic results of the proposition provide a good characterization 
of insurance behavior in finite networks and for finite c as well.

C. Geographic Networks

If real world networks are similar to the plane, Proposition 2 suggests that they 
should allow for reasonably good risk-sharing. Many papers, in various contexts, show 
that geographic proximity is a major determinant of interpersonal relationships (see for 
example Fafchamps and Gubert 2007; Conley and Udry 2010 in development contexts, 
and Lee, Mancini, and Maxwell 1990; Topa 2001 in other contexts). This motivates our 
investigation below to define plane-like networks in a spatial context.

As Figure 1 illustrates, real-world social networks have a much less regular struc-
ture than the plane. Nevertheless, these networks can often be represented in a way 
that closely resembles a regular plane, because in the physical map of the community, 
households tend to have social connections at close distances and in multiple direc-
tions. Intuitively, if a sufficiently accurate representation of this sort does exist, then 
our results on good risk-sharing are likely to carry over to real world social networks.

To formally define what makes a representation “sufficiently accurate,” we con-
sider (i) a function π :  → ​ℝ​2​ that maps agents in a social network to locations 
in ​ℝ​2​; and (ii) a two dimensional grid that divides ​ℝ​2​ into squares of side length A. 
This pair constitutes an even representation if the number of households inside each 
grid cell is uniformly bounded by positive constants from below and above. The 
representation is local if geographically close agents are connected through a path 
that is also geographically close: for any d > 0 and i and j at geographic distance  
d​( π​( i )​, π​(  j )​ )​ ≤ d, there is a path connecting i and j such that for all agents h in the 
path, d​( π​( i )​, π​( h )​ )​ is bounded from above by a constant that only depends on d. 
Finally, the representation exhibits no separating avenues if the sum of capacities of 
links between any two neighboring squares is uniformly bounded away from zero; 
this is the key condition that guarantees plane-like expansion properties.

A network is called a geographic network if it has a representation that is even, local, 
and has no separating avenues, and all link capacities are bounded away from zero.19

Corollary 1: In a geographic network, if (P1)–(P5) is satisfied, then there 
exist positive constants ​K′​ and K″ such that SDISP​( x )​ ≤ ​K′​ exp ​[ −K′′​c​ 2/3​ ]​ for some 
incentive-compatible risk-sharing arrangement.

Thus the risk-sharing properties of geographic networks are similar to the plane. 
The proof combines Proposition 2 with a renormalization argument. We take a geo-
graphic network, and superimpose on its planar representation a grid with A × A 
squares. We then merge all people within each square to create a new network. 

19 A geographic network is by assumption infinite; we define SDISP for these networks as the lim sup of (2) 
over a sequence of increasing squares in the map representation. The exact sequence does not matter for the results.



168 THE AMERICAN ECONOMIC REVIEW january 2014

Because of the key no separating avenues condition, this new network is essentially 
a plane, and hence Proposition 2(ii) can be applied to yield a bound for SDISP in the 
new network. We then pull this bound back to the old network using the fact that the 
embedding is even and local.

Geographic Networks in Practice.—Because real-world networks are finite, they 
cannot satisfy the conditions required for geographic networks, which are by defini-
tion infinite. Nevertheless, it is possible to evaluate whether concrete finite networks 
share some of the features required for geographic networks. Here, we develop an 
embedding to show that the Huaraz network gets close to satisfying the key conditions 
of evenness and no separating avenues, suggesting that the same properties that gen-
erate good risk-sharing for geographic networks are also at work in the Huaraz case. 
Figure 6, panel A shows the natural geographic map of household locations, referred 
to as lots, in this village. In Figure 6, panel B the horizontal and vertical coordinates of 
the map are rescaled to fit the community into the unit square, and a grid of 16 squares 
is also depicted. As is clear from Figure 6, panel B, this representation is unlikely to 
satisfy the geographic networks condition, because there are empty squares and the 
distribution of agents is quite heterogeneous. To construct a “geographic” represen-
tation of this Huaraz community, we transform the map using a diffusion algorithm 
described in detail in the online Appendix. The basic idea is to stretch the network 
uniformly over the unit square using a procedure in which nearby lots repel each other 
and hence lots will tend to escape to empty spaces. Figure 6, panels C and D depict the 
result after one and five rounds of iteration: the distribution of lots becomes gradually 
more homogenous. After 23 iterations (Figure 6, panel E), the distribution of lots is 
almost completely uniform. Figure 6, panel E also shows the number of lots in each of 
the 16 squares, confirming that we have an even embedding.

To evaluate the key “no separating avenues” condition, Figure 6, panel E also 
shows the number of links crossing the sides of each square.20 The agreement with 
our theoretical condition is very good: except for one side of the square in the lower 
right corner, there are no separating avenues between any two neighboring squares. 
The average number of nodes in each grid cell is 12.7 and the number of connec-
tions to neighboring squares is 49.4. To better understand what drives the success of 
this embedding, note that in Figure 6, panel E each of the 16 squares is differently 
shaded, and the corresponding households are represented by the same shades in 
panels A to D as well. In the original image (Figure 6, panel A), households are 
geographically concentrated by shade; hence the reason why the Huaraz network 
has similar expansion properties as the plane is that households tend to have friends 
in multiple directions at close distance in the original map.21

Numerical risk-sharing simulations suggest that the Huaraz social network in fact 
behaves very much like the plane network: we calculate SDISP for uniform shocks 

20 Opposing sides of the large square are assumed to be geographically next to each other, generating the topol-
ogy of a torus.

21 In contrast, when we apply the same diffusion procedure to a finite circle network with the same number of 
nodes and equivalent average degree, we find that the representation is far from satisfying the no separating avenues 
condition. In particular, Figure 10 in the online Appendix has many more gaps, especially in the center; and the 
average number of neighboring square connections is now only 23.0 which is less than half the number of neighbor-
ing connections in Figure 6, panel E.
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Panel A. Original map of Huaraz community

Panel B. Iteration 0 Panel C. Iteration 1

Panel D. Iteration 5 Panel E. Iteration 23

Figure 6. Stretching a Real-World Network  
to Construct a Geographic Representation
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with support ​[ −1, 1 ]​ and per capita capacities 1, 1.4, and 2. We obtain SDISP equal 
to 0.20, 0.11, and 0.02, respectively, which tracks the rapid decline of SDISP on the 
plane. The finding that the Huaraz community resembles a “geographic network,” 
in part because connections are correlated with physical distance, suggests that vil-
lage networks in developing countries may be similarly expansive. Our results then 
imply that typical village networks should facilitate high, although imperfect, lev-
els of informal risk-sharing—consistent with the empirical findings of Townsend 
(1994); Ogaki and Zhang (2001); Mazzocco (2007), and others.

III.  Constrained Efficient Risk-Sharing

In this section, we study constrained efficient arrangements which are 
Pareto-optimal given the enforcement constraints imposed by the network. Such 
second-best arrangements are a natural benchmark because they achieve the high-
est possible level of risk-sharing in a given network. Such arrangements can either 
be proposed and implemented by a village leader, or attained in ex ante coalitional 
bargaining, possibly through multiple rounds of renegotiation (see Gomes 2000, and 
Aghion, Antras, and Helpman 2007 that such bargaining procedures lead to efficient 
agreements). In the online Appendix we also illustrate how a decentralized sharing 
procedure between neighboring agents, as in Bramoulle and Kranton (2007), can 
achieve any constrained efficient arrangement.

A. Risk-Sharing Islands

Our main result is that constrained-efficient insurance arrangements exhibit an 
“island structure.” For every realization of endowments, connected islands of agents 
emerge endogenously, such that risk-sharing is perfect within each island, while 
links between different islands are “blocked” in the sense that transfers equal the 
link capacities. This result follows from the equivalence between constrained effi-
cient arrangements and a planner’s problem formalized below.

The intuition for islands can be seen by focusing on a utilitarian social planner 
who maximizes average expected utility. Whenever two agents consume different 
amounts, this planner can increase welfare by shifting a small amount from the agent 
with higher to the one with lower consumption. But in the optimum, such shifts 
must violate the enforcement constraints. Hence linked agents either consume the 
same amount and belong to the same island, or consume different amounts and are 
connected by a blocked link that does not allow for further transfers. Panels B–D of 
Figure 5 depict constrained efficient allocations corresponding to such a social plan-
ner: islands within which consumption is equalized are indicated by different shades.

For a formal analysis, let (​λ​i​) be a set of positive weights, and define the planner’s 
problem as

(3) 	​  max   
t
  ​ ​∑​ 

i∈
​ 

 

  ​ ​λ​i​ · E​U​i​ ​( ​x​i​ )​ 

subject to the constraint that all transfers respect the capacity constraints of the 
social network.
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Proposition 3: Every constrained efficient risk-sharing arrangement is the solu-
tion to a planner’s problem with some set of weights ​( ​λ​i​ )​. Conversely, any solution 
to the planner’s problem is constrained efficient.

The proof of this result parallels a similar equivalence result for risk-sharing in 
syndicates by Wilson (1968). Because the set of coalition-proof payoff vectors is 
convex—when two transfers satisfy a capacity constraint, so does their convex com-
bination—efficient allocations, which by definition lie on the boundary of this set, 
can be supported by tangent hyperplanes. The normal vector (​λ​i​) associated with the 
supporting hyperplane gives the appropriate planner’s problem.22, 23

Maximizing the planner’s expected utility E ​∑​  ​ 
 ​ ​λ​i​ ​U​i​ is equivalent to maximizing 

realized utility ​∑​  ​ 
 ​ ​λ​i​ ​U​i​ independently for each state. This yields a set of intuitive 

first-order conditions for each realization. To state these conditions, recall that a link 
from i to j is blocked in a given realization if ​t​ij​ = c​( i, j )​, i.e., if the link is used at 
full capacity.

Proposition 4: An incentive-compatible arrangement (​t​ij​) is constrained effi-
cient if and only if there exist positive weights (​λ​i​​)​i∈​ such that for every i, j ∈  
one of the following conditions holds:

	 (i)	​ λ​i​ ​U​ i​ ′​ (​x​i​) = ​λ​j​ ​U​ j​ ′​ (​x​j​) 

	 (ii)	​ λ​i​ ​U​ i​ ′​ (​x​i​) > ​λ​j​ ​U​ j​ ′​ (​x​j​) and the link from j to i is blocked

	 (iii)	​ λ​i​ ​U​ i​ ′​ (​x​i​) < ​λ​j​ ​U​ j​ ′​ (​x​j​) and the link from i to j is blocked.

This result generalizes our earlier intuition for arbitrary welfare weights. 
Sufficiency and uniqueness of the first-order conditions follow from the strict con-
cavity of the planner’s objective function and the convexity of the domain. The 
proposition also implies that for any pair of agents i and j, if ​λ​i​ ​U​ i​ ′​ < ​λ​j​ ​U​ j​ ′​ , then 
along every all path connecting i and j, at least one link must be blocked. Therefore, 
in any realization agents can be partitioned into connected risk-sharing islands such 
that within an island agents share risk perfectly, while cross-island insurance is lim-
ited because boundary links operate at full capacity.

Proposition 5 (Risk-Sharing Islands): In any realization e the set of agents can 
be partitioned into connected components ​​k​ such that ​λ​i​ ​U​ i​ ′​ = ​λ​j​ ​U​ j​ ′​ if i, j ∈ ​​k​ , 
and | ​t​ij​ | = c​( i, j )​ if i ∈ ​​k​ , j ∉ ​​k​ .

Sharing islands partition the network in each realization. Using the coalitional 
interpretation, these islands can be thought of in terms of “almost-deviating coali-
tions.” For example, if all links on the boundary of an island are blocked in the 
outward direction, then members of this island are transferring the highest amount 

22 See the online Appendix for extending this result to imperfect substitutes.
23 All simulations in Section II compute the constrained-efficient arrangement with equal λ weights under qua-

dratic utility.
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they can credibly pledge to the community, and hence are indifferent to deviating as 
a coalition. More generally, it can be shown that the island decomposition obtains 
by splitting the network along the boundaries of all almost-deviating coalitions. In 
effect, almost deviating coalitions act as “bottleneck groups” limiting the flow of 
resources in a way parallel to the bottleneck agents emphasized in Bloch, Genicot, 
and Ray (2008). The emergence of network-based risk-pooling islands is consistent 
with evidence documented by Attanasio et al. (2012) about the importance of social 
ties in the formation of insurance groups in Colombian villages.

When link capacities increase, the planner becomes less constrained and risk-
sharing islands tend to grow in size. This is illustrated by Figure 5, panels B to D. In 
Figure 5, panel B, where per capita capacity is 1, insurance is fairly local: there are 
30 islands on the line and 17 on the plane. As the per capita capacity goes up to 1.4, 
in Figure 5, panel C there are 17 islands on the line and only 4 on the plane; and in 
Figure 5, panel D where average capacity is 2 per agent, there are 13 islands on the 
line and just 1, fully insured island on the plane. In these simulations, the number of 
islands closely tracks the degree of insurance.

As is clear from Figure 5, in the island partition the size and location of islands, and 
hence the set of agents who fully share each others’ shocks, is endogenous to the realiza-
tion and the network. This result differentiates our model from group-based models of 
risk-sharing, where insurance groups are exogenous and do not vary with the realization.

B. Spillover Effects and Local Sharing

The island result also helps us characterize how shocks propagate in the network as 
a function of social distance. We show that shocks are shared to a greater degree with 
socially close agents, and hence network-based insurance is local: the consumption of 
socially close agents comoves more strongly than that of socially distant ones.

To formalize this point, we introduce a slightly stronger definition of risk-sharing 
islands. Fix an endowment realization ​( ​e​i​ )​, and let  ​( i )​ denote the sharing island 
containing i. We now define ​   ​ (i) to be the maximal connected set of agents j such 
that there exists a path between i and j along which no links are blocked in either 
direction. With this definition, ​   ​ (i) ⊂  (i) because Proposition 5 implies that 
links connecting different islands are all blocked. Except for knife-edge cases when 
the transfer constraint is reached but does not bind yet—which have zero probability 
when the distribution of shocks is absolutely continuous—the two definitions are 
equivalent: ​   ​ (i) =  (i).

We now explore the effects of an idiosyncratic shock to one agent’s endowment 
on the consumption of others. Fix a constrained efficient arrangement, and consider 
two realizations e = ​( ​e​i​ )​ and e′ = ​( ​e​ i​ ′​ )​, where ​e​ i​ ′​ < ​e​i​ for some i but ​e​ j​ ′​ = ​e​j​ for all 
others j ≠ i. Effectively, agent i is experiencing an idiosyncratic negative shock in 
e′ relative to e (or a positive shock like aid in e relative to e′  ). We can measure the 
impact of this negative shock on another agent j by computing the ratio of marginal 
utilities of j before and after the shock. Formally, let x and x′ denote the consumption 
vectors associated with e and e′, then we can define

 	  MU​C​j​  = ​ 
​U​ j​ ′​ ​( x′   )​
 _ 

​U​ j​ ′​ ​( x )​
 ​ ,
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which measures the marginal utility cost of the shock for agent j. A larger MU​C​j​ corre-
sponds to a higher increase in marginal utility and hence a greater consumption drop.

Proposition 6 (Spillovers and Local Sharing): Consider two realizations e = ​( ​e​i​ )​  
and e′ = ​( ​e​ i​ ′​ )​, where ​e​ i​ ′​ < ​e​i​ for some i but ​e​ j​ ′​ = ​e​j​ for all j ≠ i. Then in any second 
best arrangement x:

	 (i) 	[Monotonicity] ​x​j​ (e′  ) ≤ ​x​j​ (e) for all j, and if j ∈ ​   ​  ​( i )​ then ​x​j​ (e′  ) < ​x​j​ (e).

	 (ii) 	[Local sharing] There exists Δ > 0 such that ​| ​e​i​ − ​e​ i​ ′​ |​ < Δ implies MU​C​i​  
= MU​C​j​ for all j ∈ ​   ​ (i), and ​x​j​ ​( e′   )​ = ​x​j​ ​( e )​ for all j ∈  \ (i).

	 (iii) 	[More sharing with close friends] For any j ≠ i, there exists a path i → j such 
that for any agent l along the path, MU​C​l​ ≥ MU​C​j​ .

Part (i) shows that spillovers are monotone: If one agent receives a negative shock, 
the consumption of everybody else either decreases or remains constant. Moreover, 
the agent is partially insured by all others in the same risk-sharing island, who 
all reduce their consumption by a positive amount. Thus unless i is in a singleton  
island, he has access to at least some insurance. Intuitively, links within ​   ​ ​( i )​ are 
not blocked, and hence all members of the island can help out a little. As part (ii) 
shows, for small shocks, the set of agents who insure i is exactly ​   ​ ​( i )​. All these 
agents share an equal burden measured in terms of the marginal utility cost MUC. 
Agents outside of  ​( i )​ do not reduce their consumption at all.24 Finally, (iii) shows 
how the utility cost of agents varies by social distance. Indirect friends provide less 
insurance to i than direct friends: for any agent j ≠ i, there exists some direct friend 
of i, denoted l, who shares at least as much of the burden of the shock as j does.

The results of Proposition 6 are consistent with the empirical findings in Angelucci 
and De Giorgi (2009), who show that Progresa, a conditional cash transfer program 
in rural Mexico, leads to an increase in the consumption of the nontreated, which 
they attribute to the spillover effect of aid through the social network of the village. 
This is the logic of part (i) in the Proposition. Angelucci, De Giorgi, and Rasul 
(2012) also show that much of the increase in the consumption of the nontreated is 
due to the consumption increase of households who are relatives of the treated, con-
sistent with (ii) and (iii). The agreement between our results and existing evidence 
suggests that calibrating our model may be useful for quantifying the welfare effects 
of development aid taking into account network-based spillovers.

IV.  Endogenous Link Strength and Stability

This section presents an extension of our basic model in which the strength of social 
connections is endogenously determined. The preceding sections, by assuming that 
capacities are determined outside the model, take the view that link strength depends 
primarily on benefits of socialization which are unrelated to informal insurance.  

24 In the knife edge case where ​   ​ ​( i )​ ≠  ​( i )​, agents in  ​( i )​\​  ​ ​( i )​ may or may not share.
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We now consider the alternative that agents choose their level of socialization to obtain 
better informal risk-sharing. In this context, we use a very simple model to explore 
whether the difference in insurance outcomes between the line and plane networks is 
reduced, because people in the plane choose to socialize relatively less, or amplified, 
because people in the plane choose to socialize relatively more. We leave a fuller 
analysis of insurance with endogenous link strength for future research.

Setup.—We consider an exogenous network which is symmetric in the sense that 
for any pair of agents i and j there exists an automorphism of the network b(·) such 
that b(i) = j.25 We assume that, before shocks are realized, each agent chooses effort ​
a​i​ to socialize with her set of neighbors ​​i​ . Effort is spread equally across all links 
of the agent, and, denoting the degree of agents by d, for a given vector of efforts  
a = ​( ​a​i​ )​ capacities over a link ​( i, j )​ ∈  are determined as

(4) 	  c ​( i, j | a )​  =  min ​( ​ ​a​i​ _ 
d
 ​, ​ 

​a​j​
 _ 

d
 ​ )​.

We assume that agent i ’s incentives to socialize are determined by the utility func-
tion E​U​i​ ​( ​x​i​ − ​​  c ​​i​ )​ − α · ​a​i​ , where α captures the marginal cost of socializing, and ​​  c ​​i​  
= c​( i, j | a )​ if the agent defects on an obligation with j, and zero otherwise. Slightly 
differently from the previous sections, this formulation assumes that link capacities 
enter utility not as positive, but as potentially negative terms, which are activated by a 
deviation. This specification, by removing the direct utility effect of increased social-
ization, allows us to isolate the insurance-based incentive to invest in social links. 
Allowing link capacities to enter positively would introduce a noninsurance-based 
motive to socialize.

We call the pair ​( a, t )​ a symmetric feasible social arrangement if t is an 
incentive-compatible risk-sharing arrangement when capacities are given by  
c​( i, j | a )​ where a = ​( a, … , a )​, i.e., if each agent chooses the same socialization 
level a. We think of the pair (a, t) as a social norm which specifies a suggested 
level of socialization and a suggested risk-sharing arrangement for society; and from 
now on we focus on the case in which t is the equal-weighted constrained-efficient 
arrangement given capacities c(i, j | a).

We are interested in social norms that are stable with respect to individual deviations 
in socialization. To define stability, we first need to specify what happens when an 
agent chooses ​​ a ​​i​ ≠ a. Equation (4) immediately implies that no agent would want to 
set ​​ a ​​i​ > a. When i sets ​​ a ​​i​ < a, we assume that in the resulting new network, required 
transfers are specified by the truncated risk-sharing arrangement ​̃ t ​ defined as

 	​​   t ​​ i j​ e
 ​  = ​ { ​min ​( ​t​ i j​ e

 ​ , c ​( i, j | ​​ a ​​i​ , ​a​−i​ )​ )​
          

−min ​( −​t​ i j​ e
 ​ , c ​( i, j | ​  ​a​i​​ , ​a​−i​ )​ )​

​  ​ 
if ​t​ i j​ e

 ​ > 0
    

otherwise.
​ 

​

​

25 An automorphism b is a bijection b :  →  such that (u, v) ∈  if and only if (b(u), b(v)) ∈ . For exam-
ple, the circle or torus satisfy symmetry as defined here.
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In words, in the new network in which the links of i have lower capacity, the previ-
ously specified transfers between i and a connection j take place fully if they meet the 
new capacity constraint, but take place only partially—up to the new constraint—
otherwise. Thus, truncation captures the notion that the new social structure can 
only support transfers ​t​ e​ up to the point at which they are also incentive-compatible 
in the modified network. Given a distribution of endowment shocks, we call the 
social arrangement ​( a, t )​ stable if no agent can increase her expected utility by 
changing her socialization effort.

Analysis.—It is easy to verify that each agent’s expected utility is increasing 
and strictly concave in her effort level ​​ a ​​i​, provided that ​​ a ​​i​ < a, and hence the fol-
lowing necessary and sufficient first-order condition characterizes symmetric  
stable arrangements:

 	​​ 
​
 ​ 
​∂​−​ E​U​i​ ​( ​​ x ​​i​ )​

 _ 
∂ ​​ a ​​i​

 ​  |​​​​ a ​​i​=​a​i​
​  ≥  α    for all agents i.

The left-side derivative ​∂​−​ E​U​i​ ​( ​​ x ​​i​ )​/∂ ​​ a ​​i​ represents the marginal utility loss to 
agent i if she slightly reduces her socialization effort. Stability requires that this 
utility loss is not smaller than the utility gain from having to spend less on the  
socialization effort.

We now turn to use this model to explore how our conclusions about the line and 
the plane are affected with endogenous link strength. Specifically, we are interested 
in the highest stable socialization effort that can be supported in each network as 
we vary α. To begin, we numerically solve for the equilibrium for both binary and 
uniform shock distributions and plot, in Figure 7, the maximum stable per-capita 
link capacity cd for a range of values of the marginal cost of socialization α. The 
lesson from the figure is that for large and intermediate α the plane provides more 
incentives to socialize than the line, while this ordering is reversed for small α. 
Thus, in the range of α where insurance is not yet close to perfect, our basic con-
clusion that risk-sharing is better on the plane is amplified. Since the plane reaches 
close to full insurance sooner than the line, the relationship is eventually reversed as 
on the plane the marginal benefit of insurance decreases more quickly. However, as 
Figure 8 demonstrates, risk sharing continues to be better on the plane than on the 
line for all values of α.

A partial intuition for how the incentives to invest vary with α comes from not-
ing that an agent is affected by a marginal reduction in his investment only when 
he is on the perimeter of a risk-sharing island—because otherwise the truncation 
does not bind. In turn, the frequency with which he ends up on such a perime-
ter is related to the average perimeter-area ratio of sharing islands. In particular, 
when—as in the plane for α relatively high—that ratio is large, agents are more 
frequently on the perimeter, and hence the incentives to invest are strong, generating  
relatively more socialization.

This intuition is only partial, because the direction of flows on the boundary of a 
sharing island also matters, and, in general, the same island can have both inflows 
and outflows along its boundary. To clarify this point, let P​( k, ​r​ in​, ​r​ out​ )​ denote the 
probability that the agent is in a sharing island of size k such that its perimeter 



176 THE AMERICAN ECONOMIC REVIEW january 2014

has ​r​ in​ links receiving transfers and ​r​ out​ links sending transfers.26 Denote by  
​
_
 U ​′(x | k, ​r​ in​, ​r​ out​) the mean marginal utility of consumption of agents across all  

​( k, ​r​ in​, ​r​ out​ )​ islands and across all realizations under risk-sharing arrangement x. 
Then we can write

(5) 	​​ 
​
 ​ 
​∂​−​E​U​i​ (​​ x ​​i​) _ 

∂ ​​ a ​​i​
 ​  |​​​​ a ​​i​=​a​i​

​  =   ​ ∑​ 
k, ​r​ in​, ​r​ out​

​ 
 

  ​ P ​( k, ​r​ in​, ​r​ out​ )​ ​
_
 U ​′ (x | k, ​r​ in​, ​r​ out​) ​ ​r​ 

in​ − ​r​ out​ _ 
kd

 ​  .

The logic behind this formula is the following. Reducing socialization affects i’s 
utility only in those realizations in which he is on the boundary of a risk-sharing 
island. Because the network is symmetric, for i.i.d. shocks an agent is equally likely 
to take any of the k positions inside the risk-sharing island. Therefore, conditional on 

26 In particular, since the per link capacity is c, the total perimeter of the island is c(​r  ​in​ + ​r  ​out​).
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i being in this island, and denoting his per-link capacity by c, the expected amount 
of resources which flow to him from the outside equals ​r​ in​c/k, and the expected flow 
to the outside originating from him equals ​r​ out​c/k. Given that for ​​ a ​​i​ < a the per-link 
capacity is c = ​​ a ​​i​/d, the derivative of these quantities with respect to ​​ a ​​i​ gives the 
last term in the expression. These consumption effects are weighted by probabilities 
and by the marginal utility of consumption of agents, ​

_
 U ​′(x | k, ​r​ in​, ​r​ out​ ).

Equation (5) links the incentives to socialize with the variable ​ ​r​ 
in​ − ​r​ out​ _ kd  ​ which we 

call the normalized net flow. This random variable, although closely related, differs 
from the perimeter-area ratio ​( which equals a​[    ]​ = c ​ ​r​ 

in​ + ​r​ out​
 _ k  ​ )​ in that it also takes 

into account the direction of flows on the boundary of the island. In particular, the 
net flow can be either positive or negative. What matters for the incentives to social-
ize, according to (5), is the dispersion in the net flow: because positive normalized 
net flows tend to be associated with low consumption levels inside the sharing island 
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and therefore large weights ​
_
 U ​′(x | k, ​r​ in​, ​r​ out​ ) while the converse is true for negative 

net flows, higher net flow dispersion results in stronger incentives to invest in links.
The variability in the net flow is closely related to the average perimeter-area 

ratio. This is easiest to see in an environment with symmetric binary shocks and 
small capacities, in which each sharing island either has all links pointing in, or all 
links pointing out. In that environment, in equation (5) with probability one either ​
r​ in​ = 0 or ​r​ out​ = 0, which implies that the expression simplifies to a weighted sum 
of the perimeter-area ratios of sharing islands. But even more generally, we show 
through simulations that geometries with high perimeter-area ratios (such as the 
plane or the binary tree) also have highly dispersed net-flow-area distributions (and 
hence high marginal utility from socialization). Figure 9 shows the variance of the 
net-flow-area ratio distribution for the line and plane while controlling for the vari-
ance of consumption x (i.e., controlling for the degree of risk-sharing achieved 
by the network).27 For both binary and uniform shocks the net flow to area ratio 
has a higher variance on the plane than on the line. This translates into a larger 
marginal incentive to invest in socialization on the plane (for the same degree of 
risk-sharing): the very feature that creates good risk-sharing on the plane also makes 
these risk-sharing arrangements stable.

V.  Conclusion

This paper showed that the expansiveness of a social network determines the 
effectiveness of informal risk-sharing. Our results provide an explanation for why 
many real-life social networks are likely to be sufficiently expansive to allow for 
good risk-sharing. We also characterized Pareto-optimal arrangements and found 
that resources are shared among local groups.

One interesting direction which we leave for future research is to develop a 
fully dynamic model, in which the value of a social link is partly derived from 
the present value of future insurance benefits in the network. In such a model the 
values of social links, the network structure, and the risk-sharing agreement would  
all be endogenized.

We hope that our approach can also be used to inform empirical work. Our model 
is sufficiently tractable that it can in principle be used to estimate the strength of 
different types of links from social network and consumption data. Such estimates 
could be useful for policy experiments, such as measuring the welfare effects of 
development aid, taking into account network spillovers; or comparing the network 
structure of communities with different degrees of ethnic heterogeneity, and explor-
ing the implications for informal insurance.

27 Note that this distribution has mean 0 and is symmetric around the mean for binary and uniform shocks.
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Appendix A: Proofs

Proof of theorem 1:
The theorem can be generalized to the case where links in the network are directed, 

so that c​( i, j )​ and c​(  j, i )​ may differ. In that environment, coalition proofness now 
requires that

(A1) 	​  e​​  − ​ x​​  ≤ ​ c​ out​ ​[    ]​ ,

where ​c​ out​​[    ]​ = ​∑​ i∈,  j∉​ 
 
  ​ c(i, j) is the maximum amount that agents in  are will-

ing to give to the outside community. Here we present a proof of this more general 
result. Sufficiency follows from the discussion in the text. To prove necessity, let ​

Figure 9. Variance of Distribution of Net-Flow-Area Ratio  
(​r​ in​ − ​r​ out​)/kd for Line and Plane
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g​i​ = ​e​i​ − ​x​i​ the amount that i has to transfer away, and let ​g​​ = ​∑​ i∈​ 
 
  ​  ​e​i​ for any sub-

set of agents . Note that ​g​​ = 0 by ​e​​ = ​x​​ . Let  be the set of agents for whom ​
g​i​ ≥ 0 and let  =  \. Define the auxiliary graph ​G′​ which has two additional 
vertices, s and t, and additional edges connecting s with all agents in , and addi-
tional edges connecting t with all agents in . For any i ∈ , define the capacity  
c​( s, i )​ = ​g​i​ and c​( i, s )​ = 0. Similarly, for any j ∈ , let c​( j, t )​ = −​g​j​ and c​( t, j )​ = 0.

The auxiliary graph is useful, because implementing the desired consumption allo-
cation with a transfer scheme that meets the capacity constraints is equivalent to find-
ing an s → t flow in ​G′​ that has value ​g​​ = ​∑​ ​g​i​≥0​ 

 
  ​    ​g​i​ . To see why, note that in the desired 

allocation, exactly ​g​i​ must leave each agent i ∈ . The capacities on the new links 
ensure that in any s → t flow, at most ​g​i​ can leave agent i. Similarly, to implement the 
target, exactly −​g​j​ must flow to each agent j ∈ , and the capacity on the ​(  j, t )​ link 
ensures that this is the maximum that can flow to j. As a result, any flow with value ​
∑​ ​g​i​≥0​ 

 
  ​    ​g​i​ must, by construction, take exactly ​g​i​ away from i and deliver exactly ​g​j​ to j.
We have reduced our implementation problem to a flow problem. To compute the 

maximum s → t flow, we instead compute the value of the minimum cut. Fix a mini-
mum cut, let  be the set of agents in  that are still connected to s after the cut, and 
let  =  \. Clearly, if we consider the restriction of the cut to the original network G, 
there will be no surviving paths connecting some agent in  with some other agent in .

Let ​​1​ ⊆  denote those agents whose link with s is cut in the minimum cut of ​
G′​, and let ​​1​ ⊆  denote those in  whose link with t is cut. Let ​​2​ =   \​​1​ and ​
​2​ = \​​1​ be the sets of agents whose link with s respectively t remains; then ​
​2​ ⊆  and ​​2​ ⊆ , because otherwise there would be surviving path in ​G′​ connect-
ing s and t after the cut. This also implies that ​g​​ ≥ ​g​​​ 2​​ + ​g​​​1​​, because

(A2) 	​  g​​  = ​ g​ ∩ ​  + ​ g​ ∩ ​  ≥ ​ g​​​ 2​​  + ​ ( ​g​​  − ​ g​​​ 2​​ )​  = ​ g​​​ 2​​  + ​ g​​​ 1​​ ,

where we used that ​g​i​ ≥ 0 when i is in  and negative when i is in .
The value of the cut in ​G′​ can be bounded as

 	  cut value  ≥ ​ g​​​ 1​​  − ​ g​​​ 1​​  + ​ c​ out​ ​[  ]​ ,

where the first two terms count the total capacity of links with s and t that have 
been deleted, and the final term is a lower bound for links deleted from the original 
network G. By assumption (A1), ​c​ out​​[  ]​ ≥ ​e​​ − ​x​​ = ​g​​, and using (A2) we obtain

 	  cut value  ≥ ​ g​​​ 1​​  − ​ g​​​ 1​​  + ​ g​​​ 2​​  + ​ g​​​ 1​​  = ​ g​​​ 1​​  + ​ g​​​ 2​​  = ​ g​​ .

It follows that the value of the maximum flow is at least ​g​​ , as desired.

Appendix B: Data

Dean Karlan, Markus Mobius, and Tanya Rosenblat conducted a survey in 
November 2006 in a rural village close to Huaraz (Peru). The heads of households 
and spouses (if available) of 223 households were interviewed. The survey consisted 
of two components: a household survey and a social network survey. The household 
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survey recorded a list of all members of the household and basic demographic char-
acteristics including gender, education, occupation, and income.

The social network component of the survey asked the head of household and 
the spouse to list up to ten nonrelatives in the community with whom the respon-
dent spends the most time with in an average week. Respondents were also asked 
separately to list their first and second-degree relatives (excluding relatives related 
through marriage). We use this data to construct an undirected social network where 
two agents have a friendship link if one of them names the other as a friend and as a 
relative link if one of them lists the other as relative. We also added intra-household 
links between all members of a household which are assumed to be of unlimited 
strength. Individuals have, on average, 1.84 relative links and 1.95 nonrelative links.

In the survey, individuals were also asked whether they borrow or lend money or 
object across each link. This data was aggregated on the household level and used 
to construct Figure 1.
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